comparison 7-Haskell/day2.hs @ 90:c27c87cd0f08

Add most of the Day 2 exercises for Haskell
author IBBoard <dev@ibboard.co.uk>
date Sun, 16 Jun 2019 21:09:33 +0100
parents
children 075ff4e4feaf
comparison
equal deleted inserted replaced
89:7e4afb129bef 90:c27c87cd0f08
1 module Day2 where
2 -- We could just "import Data.List" and then use "sort", but let's do it by hand with an ugly O(n^2) approach
3 my_sort :: Ord a => [a] -> [a]
4 my_sort lst = my_sort' (<) lst []
5
6 -- my_sort' :: Ord a => [a] -> [a] -> [a]
7 -- my_sort' [] res = res
8 -- my_sort' (h:t) [] = my_sort' t [h]
9 -- my_sort' (h:t) (h_res:t_res)
10 -- | h < h_res = my_sort' t (h:h_res:t_res)
11 -- | otherwise = my_sort' t (h_res:my_sort' (h:[]) t_res)
12
13 my_sort' :: Ord a => (a -> a -> Bool) -> [a] -> [a] -> [a]
14 my_sort' cmp [] res = res
15 my_sort' cmp (h:t) [] = my_sort' cmp t [h]
16 my_sort' cmp (h:t) (h_res:t_res)
17 | cmp h h_res = my_sort' cmp t (h:h_res:t_res)
18 | otherwise = my_sort' cmp t (h_res:my_sort' cmp (h:[]) t_res)
19
20 parse_int :: String -> Int
21 parse_int str = parse_int' str 0
22
23 parse_int' :: String -> Int -> Int
24 parse_int' "" val = val
25 parse_int' (h:t) val
26 | fromEnum h >= 48 && fromEnum h <= 57 = parse_int' t (val * 10 + ((fromEnum h) - 48))
27 | otherwise = parse_int' t val
28
29 every_three :: Integer -> [Integer]
30 every_three = every_n 3
31
32 every_five :: Integer -> [Integer]
33 every_five = every_n 5
34
35 every_n :: Integer -> Integer -> [Integer]
36 every_n n x = [x, x + n ..]
37
38 -- Usage: every_m_n (every_five) 5 (every_three) 3
39 every_m_n :: (Integer -> [Integer]) -> Integer -> (Integer -> [Integer]) -> Integer -> [Integer]
40 every_m_n _m x _n y = zipWith (+) (_m x) (_n y)
41
42 halve :: Double -> Double
43 halve x = (/ 2) x -- It's ugly, but it's the "partially applied" version of "x / 2" - "(/ 2)" becomes an anonymous function that gets applied to x
44
45 new_line :: String -> String
46 new_line x = (++ "\n") x
47
48 -- Let's go Euclidean: https://en.wikipedia.org/wiki/Greatest_common_divisor#Euclid's_algorithm
49 my_gcd :: Integer -> Integer -> Integer
50 my_gcd a b
51 | a == b = a
52 | a > b = my_gcd (a - b) b
53 | otherwise = my_gcd a (b - a)
54
55 -- Wilson's theorem seems easiest: https://en.wikipedia.org/wiki/Wilson%27s_theorem
56 primes :: [Integer]
57 primes = [x | x <- [2 ..], (gcd ((product [1 .. x-1]) + 1) x) == x]