view 7-Haskell/README.txt @ 87:2b5341fc4555

Add Haskell Day 1 code and notes
author IBBoard <dev@ibboard.co.uk>
date Sat, 15 Jun 2019 17:31:22 +0100
parents
children 7e4afb129bef
line wrap: on
line source

Install with `zypper install ghc` for the Glasgow Haskell Compiler. The interactive shell (REPL) is `ghci`. Currently on v8.6.5 (was 6.12.1 in the book). Haskell uses strong static types with inference.

Numbers behave like numbers. Strings have double-quotes and characters have single quotes. An array of characters (in square brackets) is a string. "+" is purely numeric addition - concatenation is "++".

Equality is tested with "==" (equals) and "/=" (not equals - not "is divisible by"!). Haskell is strongly typed

Indentation is significant in Haskell (like Python) BUT you can do an "if … then … else …" on a single line (however, it will assume that "if then" is a parse error, probably because functional code isn't imperative and so can't miss the else)

Using functions on the wrong type of arguments seems to give helpful error messages along the lines of "No instance for (arg types) arising from a use of 'function' at X" (and "+" is a function).
":t val" lets you see the type of a variable or value, and ":set +t" lets you see the type of returned values. 

In code, functions are defined as "type function_name param = body". In code, that is always prefixed with "let".
Functions return the result of their last instruction.
Full function definitions are preceded by a type definition line in the form "function_name :: type(s) -> type(s)". You can also have generics and have "function_name :: (Parent_class generic_name) => generic_name -> generic_name".
Code in files needs to be in a module, which starts "module ModuleName where" on the top line.
You can then do `:load filename.hs` in the console. This then puts you in that module on the CLI (the prompt changes).

Haskell functions can use parameter matching on arguments - see factorial.hs.

Invoking parameters doesn't use brackets (because they're used for tuples - except when it's just a single value, when they're ignored).

Lists can be broken up with "head" and "tail" functions (or "fst" and "snd" for tuples) *or* they can be broken up on assignment. It's like Python multi-assignment, but with colon - "(_head:_tail)" (":" is the list construction operator). It can then be used in function definitions, e.g.:
    size [] = 0
    size (h:t) = 1 + size t

Haskell can create ranges with [start..end]. Specifying an invalid range (e.g. decreasing) gives an empty list. Specifying an increment is different to all other languages: [start, next..end] (e.g. "[10, 8..4]" gives "[10, 8, 6, 4]" and it works out to decrement by 2).
You can also do (lazy) infinite ranges by not specifying an end and then using "take" functions etc to pull just the values you need.

List comprehension is slightly pythonic: "[expr | val <- [vals] ]" where "expr" is the expression to calculate in the new list, val is a variable used in expr and [vals] is the source list. It's effectively "expression for value in list".
You can also assign multiple independent variables, possibly from the same source. For example:
    let crew = ["Kirk", "Spock", "McCoy"]
    [(a,b) | a <- crew, b <- crew]
calculates all combinations of crew names. Changing it to:
    [(a,b) | a <- crew, b <- crew, a /= b]
lets you add filtering to stop people being paired with themselves. Or you could use "a < b" to make it return unordered unique pairings.