Mercurial > repos > other > SevenLanguagesInSevenWeeks
view 7-Haskell/day2.hs @ 90:c27c87cd0f08
Add most of the Day 2 exercises for Haskell
author | IBBoard <dev@ibboard.co.uk> |
---|---|
date | Sun, 16 Jun 2019 21:09:33 +0100 |
parents | |
children | 075ff4e4feaf |
line wrap: on
line source
module Day2 where -- We could just "import Data.List" and then use "sort", but let's do it by hand with an ugly O(n^2) approach my_sort :: Ord a => [a] -> [a] my_sort lst = my_sort' (<) lst [] -- my_sort' :: Ord a => [a] -> [a] -> [a] -- my_sort' [] res = res -- my_sort' (h:t) [] = my_sort' t [h] -- my_sort' (h:t) (h_res:t_res) -- | h < h_res = my_sort' t (h:h_res:t_res) -- | otherwise = my_sort' t (h_res:my_sort' (h:[]) t_res) my_sort' :: Ord a => (a -> a -> Bool) -> [a] -> [a] -> [a] my_sort' cmp [] res = res my_sort' cmp (h:t) [] = my_sort' cmp t [h] my_sort' cmp (h:t) (h_res:t_res) | cmp h h_res = my_sort' cmp t (h:h_res:t_res) | otherwise = my_sort' cmp t (h_res:my_sort' cmp (h:[]) t_res) parse_int :: String -> Int parse_int str = parse_int' str 0 parse_int' :: String -> Int -> Int parse_int' "" val = val parse_int' (h:t) val | fromEnum h >= 48 && fromEnum h <= 57 = parse_int' t (val * 10 + ((fromEnum h) - 48)) | otherwise = parse_int' t val every_three :: Integer -> [Integer] every_three = every_n 3 every_five :: Integer -> [Integer] every_five = every_n 5 every_n :: Integer -> Integer -> [Integer] every_n n x = [x, x + n ..] -- Usage: every_m_n (every_five) 5 (every_three) 3 every_m_n :: (Integer -> [Integer]) -> Integer -> (Integer -> [Integer]) -> Integer -> [Integer] every_m_n _m x _n y = zipWith (+) (_m x) (_n y) halve :: Double -> Double halve x = (/ 2) x -- It's ugly, but it's the "partially applied" version of "x / 2" - "(/ 2)" becomes an anonymous function that gets applied to x new_line :: String -> String new_line x = (++ "\n") x -- Let's go Euclidean: https://en.wikipedia.org/wiki/Greatest_common_divisor#Euclid's_algorithm my_gcd :: Integer -> Integer -> Integer my_gcd a b | a == b = a | a > b = my_gcd (a - b) b | otherwise = my_gcd a (b - a) -- Wilson's theorem seems easiest: https://en.wikipedia.org/wiki/Wilson%27s_theorem primes :: [Integer] primes = [x | x <- [2 ..], (gcd ((product [1 .. x-1]) + 1) x) == x]